R A Butler Academies

Maths Calculation Policy
Updated for 2021-22
Progression in Calculations from Year 1 to 6

Addition: sum, total, parts and wholes, plus, add, altogether, more, exchange, 'is equal to' 'is the same as'

Key skills and stem sentences	Concrete	Pictorial	Abstract
Year 1			
Combining two parts to make a whole: part- whole model \qquad is a whole, \qquad is a part, \qquad is a part. There are \qquad in total. First... Then... Now... e.g.	Use cubes or other resources to add two numbers together as a group or in a bar. 	Use pictures to add two numbers together as a group or in a bar. \square	$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on The bigger number is \qquad . To find the total, I need to start at the biggest number, then count on.	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. Ten frames will also support this skill.		$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer. \qquad more than \qquad is \qquad

(delete words as chn become more familiar) First... Then... Now... E.g. First there were 4 children on the bus, then 3 children got on, Now there are 7 children on the bus. (this will help with the inverse relationship and missing number)		$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	The sum of \qquad and \qquad is The total of \qquad and \qquad is \qquad .
Making 10. I need \qquad to make ten. I have \qquad left over. 10 + \qquad is \qquad .	$6+5=11$ Start with the bigger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10. $3+9=$ Draw the tens frame and counters \square 14 $23+9=$	$\begin{aligned} & 7+\ldots=10 \\ & 10+\ldots= \end{aligned}$

Year 2			
Adding three single digits (delete words as chn become more familiar) \qquad and \qquad make ten. Ten add \qquad is \qquad	$4+7+6=17$ Use knowledge of number bonds to 10 and 20 to solve quickly. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit, e.g. put 4 and 6 together to make 10. Add on 7.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder. Look for ways to make 10 and use this knowledge to solve, $\begin{aligned} & \text { e.g. } 9+3+4=10+2+4 \\ & =16 \end{aligned}$
Add a two digit number and ones \qquad can be partitioned into \qquad and \qquad \qquad and \qquad make (a multiple of ten). (Multiple of ten and \qquad (remainder) makes \qquad . e.g. $17+5$ 5 can be partitioned into 3 and 2. 17 and 3 make 20. 20 and 2 make 22.	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to	Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$

Year 3 onwards			
Column method with exchanging Year 2 only to two 2 digit numbers Year 3 onwards will work with larger numbers If the column sum is equal to ten or more, we must exchange. We need to exchange ten ones for one ten.	Make both numbers on a place value grid. $36+25$ To progress to: Add up the ones and exhange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.	Children can draw a pictoral representation of the base 10 or place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly showing the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ Ensure that the abstract column method is shown alongside the base 10 to explictly link where the exchanging is and why. $\begin{array}{r} 536 \\ +85 \\ \hline 621 \\ \hline 11 \end{array}$

Conceptual variation; different ways to ask children to solve $21+34$

Subtraction: take away, less than, the difference, subtract, minus, fewer, decrease, exchange

Key skills	Concrete	Pictorial	Abstract
Year 1 and 2			
Taking away ones First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out, Now there are 3 children in the car.	Use physical objects, counters, cubes etc to show how objects can be taken away. $\bigcirc 6-2=4$ \bigcirc	Cross out drawn objects to show what has been taken away. Q $\otimes O$	
Counting back All year groups should use this approach when using number lines	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. To progress to: Counting back in multiples in your head, visualising the number line.

to support subtraction The whole is \qquad The part we are taking away is \qquad - \qquad and count back \qquad .	$6-2=4$ 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	This can progress all the way to counting back using two 2 digit numbers.	
Make 10 To reach the next 10 I need to takeaway \qquad \qquad can be partitioned into \qquad and \qquad \qquad takeaway \qquad is 10 . 10 takeaway \qquad is	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	To reach the next 10 I need to takeaway 3. 7 can be partitioned into 3 and 4 . 13 takeaway 3 is ten. 10 takeaway 4 is 6 .	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Column method with exchanging Year 2 only to two 2 digit numbers Year 3 to three digit numbers. Year 4 onwards will work with larger numbers The ones column represents \qquad one (s) minus \qquad ones (s). This is equal to \qquad ones. (repeat with tens, hundreds, etc) We cannot have two digits in any place value column, so we	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions that exchange twice. Make the larger number with the place value counters	Draw the base 10 and ensure the children can see what is happening when the column to the left has been exchanged. Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 7 & 28-582=146 \\ { }^{H} & T & u \\ { }^{7} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Conceptual variation; different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent $£ 186$.
How much more did Raj spend?
Calculate the difference between 391 and 186.

Missing digit calculations

What is 186 less than 391 ?
5

Multiplication double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange

Key Skills	Concrete	Pictorial	Abstract
Year 1			
Doubling Doubling is an amount twice.	Use practical activities to show how to double a number. $+\square=$ \square $+\square O=$ \square $+$ \square $=$	Draw pictures to show how to double a number. Double 4 is 8 \square] \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples We are counting in multiples of \qquad so we count every \qquad		Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Skip counting. Write sequences with multiples of numbers. $2,4,6,8,10$

	Count in multiples supported by concrete objects in equal groups．	 3 3 3 3		5，10，15，20，25， 30
Understanding that multiplication is equal groups	Use physical resources	There are \square equal groups of		
Repeated addition There are \qquad in each group．There are \qquad groups．We have to add \qquad times．	田田田 Use different objects to add equal groups． Cuisenaire rods can be used too．	88888	$5+5+5=15$	Write addition sentences to describe objects and pictures． 2×5 Abstract number line showing 3 groups of 4

Year 2			
Arraysshowing commutative multiplication \qquad lots of \qquad is the same as \qquad lots of \qquad	Create arrays using counters/ cubes to show multiplication sentences. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Draw arrays in different rotations to find commutative multiplication 0000 sentences. Link arrays to areas of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the inverse (to be taught alongside division) \qquad lots of \qquad is \qquad so \qquad divided by \qquad is \qquad	See above	See above	

Year 3 and Year 4			
	Show using base 10 or numicon (first without exchanging)		Children to be encouraged to show the steps they have taken.

Year 5 and Year 6			
Column multiplication We always need to start at the ones. \qquad ones times \qquad ones is \qquad ones. \qquad ones times \qquad tens is \qquad tens. Because we are multiplying by ten, we need to add in a zero as a place value holder. We cannot have more than one digit in any place value column, so we need to exchange \qquad ones as \qquad ten (and etc as needed)	Children to be supported by base 10 with smaller numbers before representing numbers using base 10. 6×23 It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. Use an expanded method to start with. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method.

Division share, group, divide, divided by, half, divisor, dividend, quotient, remainder, exchange

Key skills	Concrete	Pictorial	Abstract
Year 1			
Sharing objects into groups \qquad shared equally between \qquad is \qquad	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Repeated subtraction We need to divide \qquad into groups of \qquad so we need to take away \qquad each time. We have \qquad groups of \qquad .	$6+2$ 3 groups of 2		

Year 2

Division as grouping
split into \qquad groups means there would be \qquad in
each group.
\square

$$
96 \div 3=32
$$

| $\bullet \bullet \bullet \bullet \bullet$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

24 divided into groups of $6=4$
into equal groups.
Use cubes, counters, objects or place value counters to aid understanding.

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Divide 28 into 7 groups. How many are in each group?
$28 \div 7=4$

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$
\begin{aligned}
& 20 \div 5=? \\
& 5 \times ?=20
\end{aligned}
$$

Year 3 onwards			
Short division (no exchange) In division, we start from the largest place value column. We start from the right. \qquad is \qquad tens and \qquad ones. \qquad tens divided by \qquad is \qquad \qquad ones divided by \qquad is \qquad \qquad add \qquad is \qquad e.g. 36 is 3 tens and 6 ones. 3 tens divided by 3 is one ten. 6 ones divided by 3 is 2 ones. One ten add 2 ones is 12 .	Should first be shown using base 10 and shared into groups, to understand the place value. Use place value counters to divide using the bus stop method alongside		$36 \div 3=12$2 3 2 4 6
Short division (with exchange) e.g. 42 is 4 tens and 2 ones. We can share 3 tens equally with one ten in each group but there is one ten left over. We need to exchange this ten for ten ones. Now we have twelves ones. 12 shared between 3 is 4	©○○○ $O \bigcirc$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. \bigcirc Encourage them to move towards counting in multiples to divide more efficiently.	Start with division without remainders $\begin{aligned} & 42=3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$

Year 6

Long division

Systematically go through every small step using a deliberate structure that is easy to understand which numbers are being referred to e.g. 7 hundreds, not just 'the 7'.

Use partitioning to support understanding of division, e.g. $364 \div 14$

Look for numbers which are clear multiples of the divisor, e.g $364=140+140+70+14$

Divide each multiple by the divisor
$140 \div 14=10$
$140 \div 14=10$
$70 \div 14=5$
$14 \div 14=1$

Combine the answers together to find the total.
$364 \div 14=10+10+5+1=26$

Write out the divisors times table and use these facts to help.

	$1 \times 45=45$
	$2 \times 45=90$
291	$3 \times 45=135$
$4 5 \longdiv { 1 3 0 9 5 }$	$4 \times 45=180$
$4 5 \longdiv { 1 3 0 9 5 }$	$5 \times 45=225$
90	$6 \times 45=270$
409	$7 \times 45=315$
405	$8 \times 45=360$
45	$9 \times 45=405$
45	$10 \times 45=450$

Watch this simple video for a clear explanation

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615+5=$
$\mathbf{i}^{-\boldsymbol{i}}=615 \div 5$

What is the calculation?
What is the answer?

